翻訳と辞書 |
Extension of a polyhedron : ウィキペディア英語版 | Extension of a polyhedron In mathematics, in particular in the theory of polyhedra and polytopes, an extension of a polyhedron ''P'' is a polyhedron ''Q'' together with an affine or, more generally, projective map ''π'' mapping ''Q'' ''onto'' ''P''. Typically, given a polyhedron ''P'', one asks what properties an extension of ''P'' must have. Of particular importance here is the ''extension complexity'' of ''P'': the minimum number of facets of any polyhedron ''Q'' which participates in an extension of ''P''. == History ==
Historically, questions about extensions first surfaced in combinatorial optimization, where extensions arise naturally from ''extended formulations.'' A seminal work by Yannakakis connected extension complexity to various other notions in mathematics, in particular nonnegative rank of nonnegative matrices and communication complexity.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Extension of a polyhedron」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|